
BIOSTATS 690C – Fall 2020                   9.  Stata for Normal Theory Regression - version 16                             Page 1 of 48 
   

 
Design 

 Data 
Collection 

 Data 
Management 

 Data 
Summarization 

 Statistical 
Analysis 

  
Reporting 

     

Unit 9 
Stata for Normal Theory Regression 

version 16 

 
 

“Assume that a statistical model such as a linear model 
is a good first start only” 

 
- Gerald van Belle 

 
 

   
  

Normal theory regression analysis explores the relationship of one outcome that is 
continuous (e.g. Y = birth weight) with one or more predictors that can be continuous or 
discrete (e.g. X1 = months gestation, X2 = yes/no indicator of mother’s smoking status, X3 = 
mother’s systolic blood pressure, and so on).   
 

In simple linear regression, the number of predictors is one and continuous (eg 
X=mother’s systolic blood pressure).   
 
In multiple linear regression, the number of predictors is two or more and can 
be both continuous and discrete 
  

The goal is to explain the variation in the outcomes (the Y variable) with a “good” model that 
is a function of the predictors (the X variables) that is as “small” as possible.   The challenge is 
in how to achieve both “good” (close fit) and “small” (parsimony) simultaneously. 
 
Ultimately, we don’t know if our model is correct and most likely it is not.  Nevertheless, a 
model that is “good” and “small” has a variety of uses: 
 

Hypothesis Tests and Confidence Intervals 
We can ask such questions as: “Is the experimental treatment is associated with a 
statistically significant benefit?”  
 
Prediction 
We can use the estimating equation to make confidence interval predictions such as: 
the survival time following surgery of a future patient undergoing coronary bypass 
surgery. 

Insights into Nature 
Sometimes, the fitted model derives from a physical-equation.  An example is 
Michaelis-Menton kinetics.  A Michaelis-Menton model is fit to the data for the 
purpose of estimating the actual rate of a particular chemical reaction.   
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Learning Objectives 
 
 

   
  

When you have finished this unit, you should be able to: 
 

§ Define the simple and multiple linear regression models; 
 

§ State and explain the assumptions for normal theory linear regression analysis; 
 

§ Use Stata to explore a data set (numerical descriptions, scatterplots, etc) prior to model 
estimation;  
 

§ Use Stata to create design variables for use in the modeling of categorical explanatory 
variables; 
 

§ Use Stata to fit (estimate) a normal theory regression model; 
 

§ Interpret a fitted model, including the regression coefficients, standard errors, R2, sums of 
squares, analysis of variance, t-tests, and F-tests; 
 

§ Explain confounding and effect modification; 
 

§ Use Stata to assess confounding and modification in a normal theory regression; 
 

§ Use Stata to perform hypothesis tests and obtain confidence intervals; 
 

§ Use Stata to produce post-estimation graphical summaries of model fit; 
 

§ Use Stata to perform regression diagnostics to assess model adequacy for a normal theory 
regression; and 
 

§ Write a 1-2 paragraph interpretation of a normal theory regression analysis. 
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1.  Introduction 

 
1.1  Settings Where Regression Might Be Considered 

Example #1 
Are Emergency Calls to the New York Auto Club Related to the Weather? 

Source:   
Chatterjee, S; Handcock MS and Simonoff JS  A Casebook for a First Course in Statistics and Data Analysis.  
New York, John Wiley, 1995, pp 145-152. 
 
Are calls to the New York Auto Club related to the weather, with more calls occurring during bad weather?   To 
explore this possibility, the NY Auto Club obtained observations on numbers of calls to the New York Auto Club 
(Y=calls) together with several kinds of information about the weather on the day of the call.  Among the analyses 
they performed was a simple linear regression with outcome (dependent) variable Y and predictor (explanatory) 
variable X, both continuous, defined: 
 
                                               Y = calls (number of calls) 
                                               X = low (the lowest temperature of the day).      
 
Dear reader:  Strictly speaking, the variable Y=calls is discrete, not continuous.   In this example, however, the sample size was large and the distribution 
of calls was approximated well with the assumption of normality.  So, the normal theory linear regression went forward! 
 

Example #2 
Does the expression of p53 change with parity and age? 

Source:   
Matthews et al.  Parity Induced Protection Against Breast Cancer 2007. 
 
P53 is a human gene that is a tumor suppressor gene.   Malfunctions of this gene have been implicated in the 
development and progression of many cancers, including breast cancer.   Matthews et al were interested in 
exploring the relationship of Y=p53 expression to parity and age at first pregnancy, after adjustment for other, 
established, risk factors for breast cancer, including:  age at first mensis, family history of breast cancer, 
menopausal status, and history of oral contraceptive use.   

• Among the initial analyses, a simple linear regression might be performed to obtain a thorough 
understanding of the relationship of p53 expression and age.  Both the outcome (Y) and the predictor 
(X) are continuous. 
 
                           Y =  p53 expression 
                           X = Age 
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• A multiple linear regression might then be performed to see if age and parity retain their predictive 
significance, after controlling for the other, known, risk factors for breast cancer.  Thus, the analysis 
would consider one outcome variable (Y) and 6 predictor variables (X1, X2, X3, X4, X5, X6): 
 

                                            Y =  p53 
                                            X1 = Age 
                                            X2 = Parity 
                                            X3 = Age at first mensis 
                                            X4 = Family history of breast cancer 
                                            X5 = Menopausal status 
                                            X6 = History of oral contraceptive use 

Example #3 
Does Air Pollution Reduce Lung Function? 

Source: 
Detels et al (1979) The UCLA population studies of chronic obstructive respiratory disease.  I.  Methodology and 
comparison of lung function in areas of high and low pollution.  Am. J. Epidemiol. 109:  33-58.   

Detels et al (1979) investigated the relationship of lung function to exposure to air pollution among residents of 
Los Angeles in the 1970’s.  Baseline and follow-up measurements of exposure and lung function were obtained.  
Also obtained were measurements of selected other variables that the investigators suspected might confound or 
modify the effects of pollution on lung function:  age, sex, height, weight, etc.  Afifi, Clark and May (2004) 
consider portions of this data in their 2004 text, Computer-Aided Multivariate Analysis, Fourth Edition (Chapman 
& Hall) 

• It is already known that a person’s FEV is related to their height.  Thus, an analysis of the effects of air 
pollution might begin with a simple linear regression analysis of the relationship between FEV and 
height before moving on to an examination of the effects of exposure to air pollution: 
 
                           Y =  FEV, liters 
                           X = Height, inches 
 

• A multiple linear regression might then be performed to determine the nature and strength of 
exposure to pollution for the prediction of lung function, taking into account the role of height and 
other influences on lung function, such as age, smoking, etc.   For example, the relationship of lung 
function to exposure to air pollution might be different for smokers and non-smokers; this would be an 
example of effect modification (interaction).  It might also be the case that the relationship of lung 
function to exposure to air pollution is confounded by height.  Here, we would have something like: 

                                            Y =  FEV, liters 
                                            X1 = Exposure to air pollution 
                                            X2 = Height, inches 
                                            X3 = Smoking (1=yes, 0=no)  
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Example #4 
Exercise and Glucose for the Prevention of Diabetes 

Source: 
Hulley et al (1998) Randomized trial of estrogen plus progestin for secondary prevention of heart disease in 
postmenopausal women.  The Heart and Estrogen/progestin Study.   JAMA 280(7):  605-13.   

In the HERS study, Hulley et al. (1998) sought to determine if exercise, a modifiable behavior, might lower the 
risk of diabetes in non-diabetic women who were at risk of developing the disease.   The question is a complex 
one because there are many risk factors for diabetes.  Moreover, the type of woman who chooses to exercise may 
be related in other ways to risk of diabetes, apart from the fact of her exercise habit.  For example, women who 
exercise regularly are typically younger and have lower body mass index (BMI); these characteristics also confer a 
risk benefit with respect to diabetes.  Finally, the benefit of exercise may be mediated through a reduction of body 
mass index.  Vittinghoff, Glidden, Shiboski and McCullogh (2005) consider portions of this data in their 2005 
text, Regression Methods in Biostatistics:  Linear.Logistic, Survival and Repeated Measures Models (Springer).  
  

• A multiple linear regression was performed to assess the benefit of exercising at least three 
times/week, compared to no exercise, on blood glucose, after controlling for other factors associated 
with blood glucose levels.  Thus, here we would have something like: 

                                            Y =  Glucose, mg/dL 
                                            X1 = Exercise (1=yes if 3x/week or more,  0 = no) 
                                            X2 = Age, years 
                                            X3 = Body Mass Index (BMI) 
                                            X4 = Alcohol Use (1=yes, 0=no)  
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1.2  Review - What is Statistical Modeling 

George E.P. Box, a very famous statistician, once said, “All models are wrong, but some are useful.”  
Incorrectness notwithstanding, we do statistical modeling for a very good reason:  we seek an understanding of the 
natures and strengths of the relationships (if any) that might exist in a set of observations that co-vary. 

For any set of observations, theoretically, lots of models are possible.  So, how to choose?   The goal of statistical 
modeling is to obtain a model that is simultaneously minimally adequate and a good fit.   The model should 
also make sense. 
 

Minimally adequate 

§ Each predictor is “important” in its own right 
§ Each extra predictor is retained in the model only if it yields a significant improvement 

(in fit and in variation explained). 
§ The model should not contain any redundant parameters. 

Good Fit 

§ The amount of variability in the outcomes (the Y variable) explained is a lot 
§ The outcomes that are predicted by the model are close to what was actually observed. 

The model should also make sense 

§ A preferred model is one based on “subject matter” considerations 
§ The preferred predictors are the ones that are simply and conveniently measured. 

 

 

It is not possible to choose a model that is simultaneously minimally adequate and a perfect fit.  
Model estimation and selection must achieve an appropriate balance.  
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1.3  A General Approach for Model Development 
 
There are no rules nor a single best strategy.  Different study designs and research questions call for different 
approaches for model development.  Tip – Before you begin model development, make a list of your study design, 
research aims, outcome variable, primary predictor variables, and covariates.   
 
As a general suggestion, the following approach has the advantages of providing a reasonably thorough 
exploration of the data and relatively little risk of missing something important 

Preliminary – Be sure you have:  (1) checked, cleaned and described your data,  (2) screened the data for 
possible associations, and (3) thoroughly explored the bivariate (also called “single predictor”, 
“unadjusted”, “crude”) relationships. 

Step 1 – Fit the “maximal” model. 
The maximal model is the large model that contains all the explanatory variables of interest as predictors.  This 
model also contains all the covariates that might be of interest.  It also contains all the interactions that might be 
of interest.   Note the amount of variation explained. 
 

Step 2 – Begin simplifying the model. 
Inspect each of the terms in the “maximal” model with the goal of removing the predictor that is the least 
significant.   Drop from the model the predictors that are the least significant, beginning with the higher order 
interactions (Tip -interactions are complicated and we are aiming for a simple model).  Fit the reduced model.  
Compare the amount of variation explained by the reduced model with the amount of variation explained by the 
“maximal” model. 

If the deletion of a predictor has little effect on the variation explained 
Then leave that predictor out of the model. 
And inspect each of the terms in the model again. 

If the deletion of a predictor has a significant effect on the variation explained 
Then put that predictor back into the model. 

Step 3 – Keep simplifying the model. 
Repeat step 2, over and over, until the model remaining contains nothing but significant predictor variables.    

 

Beware of some important caveats 

§ Sometimes, you will want to keep a predictor in the model regardless of its statistical 
significance (an example is randomization assignment in a clinical trial) 

§ The order in which you delete terms from the model matters 
§ You still need to be flexible to considerations of biology and what makes sense. 
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1.4  Review - Normal Theory Regression 

Normal theory regression analysis is used to investigate possibly complex relationships when: 

• The outcome is a single continuous variable (Y) that can reasonably be assumed to be distributed 
normal; and  
 

• The outcome is potentially related to possibly several predictor variables (X1, X2, …, Xp) which 
can be continuous or discrete; and 
 

• Some of the predictor variables might confound the prediction role of other explanatory variables; 
and   
 

• Some of the predictor-outcome relationships may be different (are modified by) depending on the 
level of one or more different predictor variables (interaction) 

 
 Simple Linear Regression:  

A simple linear regression model is one for which the mean μ  (the average value) of one continuous, and 
normally distributed, outcome random variable Y (e.g. Y= FEV) varies linearly with changes in one 
continuous predictor variable X (e.g. X=Height).  It says that the expected values of the outcome Y, as X 
changes, lie on a straight line (“regression line”).   
 

 

 

 



BIOSTATS 690C – Fall 2020                   9.  Stata for Normal Theory Regression - version 16                             Page 10 of 48 
   

 
Design 

 Data 
Collection 

 Data 
Management 

 Data 
Summarization 

 Statistical 
Analysis 

  
Reporting 

     

Assumptions 

1. The outcomes Y1, Y2, … , Yn are independent. 
 

2.   The values of the predictor variable X are fixed and measured without error. 
 
3.  At each value of the predictor variable X=x, the distribution of the outcome Y 
     is normal with  
 
                                      mean = µY|X=x  =  b0  +  b1  x  
                                 variance = sY|x2. 

 

Model 

These assumptions mean that we are considering the following model.  For individual “i”,  
 

                                 where 
 

 
1.  The errors ε1, ε2, … , εn are independent. 
 
2.  Each error εi is distributed is normal with  
 
 
                                      mean = 0  
                                 variance = sY|x2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i 0 1 i iY   =  β  + β x  + ε
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Multiple Linear Regression:  

In multiple linear regression, there is still just one outcome variable, continuous.  The term “multiple” refers to 
there being more than one predictor variable.   
 
 Definition 

A multiple linear regression model is a particular model in which the mean μ of one continuous outcome random 
variable Y (e.g. Y= FEV) varies linearly with changes in two or more predictor variables X1, X2, etc.  (e.g. 
X1=Height, X2 = Smoking (1=yes, 0 = no).  The predictor variables can be continuous, discrete, or both.  A 
multiple linear regression model says that the expected values (μ) of the outcome Y, as X1, X2, etc change, lie on a 
plane (“regression plane”).   
 
 
Assumptions 
 
The assumptions required are an extension of those for simple linear regression. 
 
1.  The outcomes Y1, Y2, … , Yn are independent. 

 
2.  The values of the predictor variables X1 … Xp are fixed and measured without error. 

 
3. For each fixed profile of values,  x1, x2, ….., xp, of the p predictor variables X1 … Xp  (written using vector 

notation X=x), the distribution of values of Y  is normal with  
 
                                    mean  =   µY|X=x  =  b0  +  b1 X1  +  …  +  bp Xp 

 
                               variance = sY|X=x2. 

 
Model 
 
Our model is now:   
 
                                         Y = b0 + b1 X1 + … +  bp Xp + ε 
 

• p = # predictors, apart from the intercept 
 

• Each X1 … Xp can be either discrete or continuous. 
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2.  Example of Stata to Perform Normal Theory Regression 

 
 
How to follow along: 
Download from the course website.  
framingham_1000.dta  

 
 
Source: 
Levy (1999) National Heart Lung and Blood Institute. Center for Bio-Medical Communication.    
Framingham Heart Study 
 
Description: 
Cardiovascular disease (CVD) is the leading cause of death and serious illness in the United States. In 1948, the 
Framingham Heart Study - under the direction of the National Heart Institute (now known as the National Heart, 
Lung, and Blood Institute or NHLBI) was initiated. The objective of the Framingham Heart Study was to identify 
the common factors or characteristics that contribute to CVD by following its development over a long period of 
time in a large group of participants who had not yet developed overt symptoms of CVD or suffered a heart attack 
or stroke.   
 
Here we will use a subset of the data comprised of information on 9 variables in a subset of n=1000. 
Note – some of the variables shown here will be created in the pages that follow. 
Variable Label Codings 
sbp Systolic Blood Pressure (mm Hg)  
ln_sbp Natural logarithm of sbp ln_sbp=ln(sbp) 
age Age, years  
bmi Body Mass index (kg/m2)  
ln_bmi Natural logarithm of bmi ln_bmi=ln(bmi) 
sex Gender 1=male 

2=female 
female Female Indicator 0 = male 

1 = female 
scl Serum Cholesterol (mg/100 ml)  
ln_scl Natural logarithm of scl ln_scl=ln(scl) 
   

  
Multiple Regression Variables: 
Outcome Y = ln_sbp 
Predictor Variables:  ln_bmi, ln_scl, age, sex 

Research Question: 
From among these 4 “candidate” predictors, what are the important “risk” factors and what is the nature of their 
association with Y=ln_sbp?   
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The basic steps in this illustration are the following and correspond to the general approach to model development 
introduced on page 8.  

Plan of Illustration 

 
Step 1 – Exploratory Data Analysis, Indicator Variables, and Interactions. 
Examine descriptive statistics, assess normality of the dependent variable, consider a “normalizing” 
transformation if needed, create indicator variables, create interaction variables 

Step 2 – Examine Bivariate Relationships. 
Look at the relationship of the dependent variables (Y) with each of the candidate predictor variables (X).   
Look at these relationships graphically and test correlations.  Consider transformations of the predictor variables 
if needed.  

Step 3 – Fit Models and Choose “Tentative” Final Model. 
Fit an initial model.   Fit alternative models.  Compare competing models with partial F-tests and side-by-side 
comparisons of estimated regression coefficients, percent variance explained (R-squared), and mean squared 
error. Choose a “tentative” final model.   

Step 4 – Regression Diagnostics. 
Fit again the “tentative” final model; this is a necessary preliminary to doing most regression diagnostics.  
Check model assumptions.  Check model adequacy. 

Step 5 – Repeat steps #3 and #4 as needed. 
 

Step 6 – Report Regression Results. 
Produce appropriate tabulations of regression results.  Produce graphical summaries of the “final” model.  
Interpret.  
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Step 1 – Exploratory Data Analysis, Indicator Variables, and Interactions. 
Examine descriptive statistics, assess normality of the dependent variable, consider a “normalizing” 
transformation if needed, create indicator variables, create interaction variables. 

 
 
. * -----  Prelminary:  Check variables with respect to definition, # obs, missing, range, etc.  
. codebook sex sbp scl age bmi id, compact 
 
Variable    Obs Unique      Mean   Min   Max  Label 
------------------------------------------------------------------------------------------------------ 
sex        1000      2     1.557     1     2  Sex 
sbp        1000     87    132.35    80   270  Systolic Blood Pressure 
scl         996    182  227.8464   115   493  Serum Cholesterol 
age        1000     36    45.922    30    66  Age in Years 
bmi         998    186  25.56623  16.4  43.4  Body Mass Index 
id         1000   1000  2410.031     1  4697   
------------------------------------------------------------------------------------------------------ 
Interpretation:  1) sex is coded 1 or 2;  2) we are missing 4 observations of scl and 2 observations of bmi. 
 
. * -----  1)  Create a data set comprised of complete observations ONLY. Create new vars.  Save.  
. drop if scl>=.|bmi>=. 
(6 observations deleted) 
 
. codebook sex sbp scl age bmi id, compact 
 
Variable   Obs Unique      Mean   Min   Max  Label 
----------------------------------------------------------------------------------------------------- 
sex        994      2  1.557344     1     2  Sex 
sbp        994     87  132.3702    80   270  Systolic Blood Pressure 
scl        994    182  227.8773   115   493  Serum Cholesterol 
age        994     36  45.92153    30    66  Age in Years 
bmi        994    186  25.57706  16.4  43.4  Body Mass Index 
id         994    994  2409.462     1  4697  Subject id 
------------------------------------------------------------------------------------------------------ 
 
. generate ln_scl=log(scl) 
. generate ln_sbp=ln(sbp) 
. generate ln_bmi=ln(bmi) 
. generate female=(sex==2) 
 
. label variable ln_sbp "Natural logarithm (sbp)" 
. label variable ln_bmi "Natural logarithm (bmi)" 
. label variable ln_scl "Natural logarithm (scl)" 
. label variable female “Female (0/1)” 
 
 
. * ----- Save complete data as framingham_complete.dta 
. save "/Users/cbigelow/Desktop/framingham_complete.dta" 
file /Users/cbigelow/Desktop/framingham_complete.dta saved 
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. * -----  2) Numerical descriptives to examine data for shape, range, outliers and completeness.   
 
 
. tabstat sbp ln_sbp age bmi ln_bmi scl, statistics(n mean sd min q max) columns(statistics) 
format(%8.2f) 
 
    variable |         N      mean        sd       min       p25       p50       p75       max 
-------------+-------------------------------------------------------------------------------- 
         sbp |    994.00    132.37     22.99     80.00    116.00    128.00    144.00    270.00 
      ln_sbp |    994.00      4.87      0.16      4.38      4.75      4.85      4.97      5.60 
         age |    994.00     45.92      8.53     30.00     39.00     45.00     53.00     66.00 
         bmi |    994.00     25.58      3.85     16.40     23.00     25.10     27.80     43.40 
      ln_bmi |    994.00      3.23      0.15      2.80      3.14      3.22      3.33      3.77 
         scl |    994.00    227.88     45.10    115.00    197.00    225.00    255.00    493.00 
---------------------------------------------------------------------------------------------- 
 
  
. fre sex 
 
sex -- Sex 
------------------------------------------------------------- 
                |      Freq.    Percent      Valid       Cum. 
----------------+-------------------------------------------- 
Valid   1 Men   |        440      44.27      44.27      44.27 
        2 Women |        554      55.73      55.73     100.00 
        Total   |        994     100.00     100.00            
------------------------------------------------------------- 
 
 
Dear Reader:  The following assessment of normality is for illustration.  In actuality, we already know that we will be using 
Y=ln(sbp) as our dependent variable. 
 
. * -----  3) Assess normality of “candidate” dependent variable Y=sbp 
. * sfrancia test of normality (Null:  distribution is normal) 
. sfrancia sbp 
 
                  Shapiro-Francia W' test for normal data 
 
    Variable |       Obs       W'          V'        z       Prob>z 
-------------+----------------------------------------------------- 
         sbp |       994    0.92193     52.000     9.055    0.00001 
 
 
Interpretation:  The null hypothesis of normality is rejected (p = .00001) à consider a transformation. 
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. * histogram with overlay normal and quantile-normal plot 

. * LOOK FOR:  points in quantile-normal plot should fall on the line 

. histogram sbp, normal title("Histogram") subtitle("Y=sbp") name(histogram, replace) 
(bin=29, start=80, width=6.5517241) 
 
. qnorm sbp, title("Normal QQ Plot") subtitle("Y=sbp") name(qqplot, replace) 
. graph combine histogram qqplot 
 
 

 

 
 

 
Interpretation:  The distribution of Y=sbp departs from normality à confirming that we should consider a transformation. 
 
. * command gladder to explore appropriate transformations of Y=sbp 
. * NOTE – You may need to issue the command findit gladder and download the routine sed2 
. gladder sbp 
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Interpretation:  3 transformations look promising:  log, 1/sqrt, and inverse.  For this illustration we already know we will use the natural log 
transformation. 
 
 
. * -----  4) Create Interactions 
 
. * Interaction age * female sex 
. generate age_female=age*female 
(0 missing values generated) 
 
. * Interaction ln(scl) * female sex 
. generate lnscl_female=ln_scl*female 
(4 missing values generated) 
 
. * Interaction ln(bmi) * female sex 
. generate lnbmi_female=ln_bmi*female 
(2 missing values generated) 
 
. label variable age_female "Age x Female Interaction" 
. label variable lnscl_female "ln(scl) x Female Interaction" 
. label variable lnbmi_female "ln(bmi) x Female Interaction" 
 
 
 

 
Step 2 – Examine Bivariate Relationships. 
Look at the relationship of the dependent variables (Y) with each of the candidate predictor variables (X).   
Look at these relationships graphically and test correlations.  Consider transformations of the predictor variables 
if needed.  

 
 
p-value for Null:  zero correlation < .0001 à Reject null. 
 
. * -----  1) Command pwcorr to obtain pairwise correlations of Y with each X 
. * Command pwcorr YVARIABLE X1 X2 etc  
. pwcorr ln_sbp age ln_bmi ln_scl sex, obs sig 
 
             |   ln_sbp      age   ln_bmi   ln_scl      sex 
-------------+--------------------------------------------- 
      ln_sbp |   1.0000  
             | 
             |      994   correlation(ln_sbp, age) = .4103 (Thus, R-squared = .41032 =.1683)     
             | 
         age |   0.4103   1.0000  
             |   0.0000     p-value for Null:  zero correlation < .0001 à Reject null. 
             |      994      994 
             | 
      ln_bmi |   0.3508   0.1988   1.0000  
             |   0.0000   0.0000 
             |      994      994      994 
             | 
      ln_scl |   0.2524   0.3055   0.2358   1.0000  
             |   0.0000   0.0000   0.0000 
             |      994      994      994      994 
             | 
         sex |   0.0119   0.0250  -0.0689   0.0095   1.0000  
             |   0.7077   0.4303   0.0298   0.7642 
             |      994      994      994      994      994 
             | 
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. * -----  2) Command graph matrix to obtain pairwise scatterplots of Y with each X 

. * graph matrix yvar xvar1 xvar2  

. graph matrix ln_sbp age ln_bmi ln_scl, half msize(vsmall) 
 

 
 
. * -----  3) Command graph twoway to obtain pairwise scatterplots of Y with ONE X 
. * Tip! Consider doing an overlay of 3 plots:  1) scatter, 2) least squares line, and 3) lowess 
. * graph twoway (scatter yvar xvar) (lfit yvar xvar) (lowess yvar xvar) 
. graph twoway (scatter ln_sbp ln_bmi, symbol(d) msize(vsmall)) (lfit ln_sbp ln_bmi) (lowess ln_sbp 
ln_bmi), title("Bivariate Association") ylabel4(.5)6) ytitle("Y = ln_sbp") xtitle("X = ln(bmi)") 
legend(off) 
 

 
 
Note:   Y=ln_sbp looks to be linearly related to X=ln_bmi.   The lowess fit does not depart appreciably from the least squares linear fit. 
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Step 3 – Fit Models and Choose “Tentative” Final Model. 
Fit an initial model.   Fit alternative models.  Compare competing models with partial F-tests and side-by-side 
comparisons of estimated regression coefficients, percent variance explained (R-squared), and mean squared 
error. Choose a “tentative” final model.   

 
 
 
. * -----  1)  Fit of initial “maximal” model and tests of interactions. 

.* regress yvar xvar1 xvar2             Y=ln_sbp   coef. =        _cons = intercept 
 
. regress ln_sbp ln_bmi ln_scl age female lnbmi_female lnscl_female age_female 
 
      Source |       SS           df       MS      Number of obs   =       994 
-------------+----------------------------------   F(7, 986)       =     51.21 
       Model |  7.01711933         7  1.00244562   Prob > F        =    0.0000 
    Residual |  19.3006631       986  .019574709   R-squared       =    0.2666 
-------------+----------------------------------   Adj R-squared   =    0.2614 
       Total |  26.3177825       993  .026503306   Root MSE        =    .13991 
 
------------------------------------------------------------------------------ 
      ln_sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      ln_bmi |    .303811   .0549107     5.53   0.000     .1960557    .4115663 
      ln_scl |   .0591585   .0368291     1.61   0.109     -.013114     .131431 
         age |    .003694   .0008046     4.59   0.000      .002115    .0052729 
      female |  -.0109333   .3043505    -0.04   0.971    -.6081825    .5863159 
lnbmi_female |  -.0507228   .0674812    -0.75   0.452    -.1831461    .0817005 
lnscl_female |  -.0091802   .0498751    -0.18   0.854    -.1070538    .0886934 
  age_female |   .0050381   .0011343     4.44   0.000     .0028121    .0072641 
       _cons |   3.396028    .233872    14.52   0.000     2.937084    3.854972 
 
 
The fitted line is thus the following.  

 

  
. * -----  command testparm to all the interaction terms (3 df Partial F) (NULL: zero) 
. testparm lnbmi_female lnscl_female age_female 
 
 ( 1)  lnbmi_female = 0 
 ( 2)  lnscl_female = 0 
 ( 3)  age_female = 0 
 
       F(  3,   986) =    6.89 
            Prob > F =    0.0001 
 
 Interpretation:  The null hypothesis that all 3 interactions are zero is rejected (p=.0001).  Examination of the coefficients table (see P > |t| ) suggests that 
this significance is associated with just one interaction, age_female.  Perhaps the other 2 interactions could be dropped. 
 
  
 
 
 
 
 
 
 
 

β̂

ln_sbp̂  =  3.4  +  0.30*ln_bmi  +  0.06*ln_scl  +  0.003*age
               -  0.01*female  -  0.05*lnbmi_female  -  0.009lnscl_female
              +  0.005*age_female
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. * -----  Command testparm xvar1 xvar2 to test 2 interactions (2 df Partial F)(NULL: zero) 
. testparm lnbmi_female lnscl_female 
 
 ( 1)  lnbmi_female = 0 
 ( 2)  lnscl_female = 0 
 
       F(  2,   986) =    0.34 
            Prob > F =    0.7144 
 
Interpretation:  Nice!  The null hypothesis that the 2 interactions are zero is NOT rejected à  So, tentatively, we think it’s okay to drop lnbmi_female 
and lnscl_female 
 
  
. * ---- 2) Fit of reduced multiple predictor model (this is the candidate/tentative final model) 
 
. regress ln_sbp ln_bmi ln_scl age female age_female 
 
      Source |       SS           df       MS      Number of obs   =       994 
-------------+----------------------------------   F(5, 988)       =     71.66 
       Model |  7.00394663         5  1.40078933   Prob > F        =    0.0000 
    Residual |  19.3138358       988  .019548417   R-squared       =    0.2661 
-------------+----------------------------------   Adj R-squared   =    0.2624 
       Total |  26.3177825       993  .026503306   Root MSE        =    .13982 
 
------------------------------------------------------------------------------ 
      ln_sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      ln_bmi |   .2707647   .0318537     8.50   0.000      .208256    .3332734 
      ln_scl |   .0559982    .024711     2.27   0.024     .0075061    .1044902 
         age |   .0036879   .0008017     4.60   0.000     .0021147    .0052612 
      female |  -.2169167   .0508166    -4.27   0.000    -.3166377   -.1171957 
  age_female |   .0048696   .0010882     4.47   0.000     .0027341    .0070051 
       _cons |   3.520535   .1586124    22.20   0.000     3.209279    3.831791 
------------------------------------------------------------------------------ 
Interpretation:  The overall F test (F=71.66) is highly statistically significant.   The percent variance explained by this  
fitted model is 26.6%.   Each predictor, controlling for all the other predictors in the model, has a slope that is 
statistically significantly different from the null value of zero.   
.  
. * ----  3) Compare Some Competing Models.  Use commands eststo and esttab to make a nice table. 
. * NOTE – You may need to issue the command findit eststo and download 
. * TIP! – Here, I’m using the prefix “quietly:” to suppress all the output.  I don’t need 
. * to see it all again and, besides, I’m showing you how to produce a nifty table. 
 
. *-- model 1 – Initial “maximal” model 
. quietly: regress ln_sbp ln_bmi ln_scl age female age_female lnbmi_female lnscl_female 
. eststo model1 
 
 
. *-- model 2 – Candidate final multiple predictor model 
. quietly: regress ln_sbp ln_bmi ln_scl age female age_female  
. eststo model2 
 
  
. * --- model 3 – Single Predictor model, X=ln(bmi) 
. quietly: regress ln_sbp ln_bmi  
. eststo model3 
 
 
  
. * ---- model 4 – Single Predictor model, X=ln(scl) 
. quietly: regress ln_sbp ln_scl  
. eststo model4 
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.  
. * ----  model 5 – Two Predictor model + Interaction:  age, female, and [age x female] 
. quietly: regress ln_sbp age female age_female  
. eststo model5 
 
 
. * -- Show comparison of models #1 - #5 
. esttab, r2 se scalar(rmse) 

                                                            
 
-------------------------------------------------------------------------------------------- 
                      (1)             (2)             (3)             (4)             (5)    
                   ln_sbp          ln_sbp          ln_sbp          ln_sbp          ln_sbp    
-------------------------------------------------------------------------------------------- 
ln_bmi              0.304***        0.271***        0.388***                                 
                 (0.0549)        (0.0319)        (0.0329)                                    
 
ln_scl             0.0592          0.0560*                          0.211***                 
                 (0.0368)        (0.0247)                        (0.0257)                    
 
age               0.00369***      0.00369***                                      0.00370*** 
               (0.000805)      (0.000802)                                      (0.000833)    
 
female            -0.0109          -0.217***                                       -0.327*** 
                  (0.304)        (0.0508)                                        (0.0511)    
 
age_female        0.00504***      0.00487***                                      0.00715*** 
                (0.00113)       (0.00109)                                       (0.00110)    
 
lnbmi_female      -0.0507                                                                    
                 (0.0675)                                                                    
 
lnscl_female     -0.00918                                                                    
                 (0.0499)                                                                    
 
_cons               3.396***        3.521***        3.618***        3.730***        4.701*** 
                  (0.234)         (0.159)         (0.106)         (0.139)        (0.0387)    
-------------------------------------------------------------------------------------------- 
N                     994             994             994             994             994    
R-sq                0.267           0.266           0.123           0.064           0.203    
rmse                0.140           0.140           0.153           0.158           0.146    
-------------------------------------------------------------------------------------------- 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 
Interpretation:  Model #2 is our “tentative” final model.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

β̂ sê(β̂ )
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Step 4 – Regression Diagnostics. 
Tip – You must fit your model before any diagnostics on it.  The diagnostics you run are called “post-
estimation” commands (that makes sense, yes?). Fit again the “tentative” final model; this is a necessary 
preliminary to doing most regression diagnostics.  Check model assumptions.  Check model adequacy. 

 
 
. * -----  Preliminary:  Must fit the model before doing regression diagnostics (Okay to do quietly) 
. quietly: regress ln_sbp ln_bmi ln_scl age female age_female  
 
 
. * -----  1) Linearity: Plot of Observed v Predicted 
. * LOOK FOR:  Points along a straight line (this suggests all is well) 
 
. * Command predict to create a new variable=ypredicted that contains the predicted Y values 
. predict ypredicted, xb 
 
 
. graph twoway (scatter ypredicted ln_sbp, symbol(d) msize(vsmall)) (lfit ypredicted ln_sbp) (lfitci 
ypredicted ln_sbp), title("Model Assessment") subtitle("Plot of Observed versus Predicted") 
xtitle("Observed Y = ln(sbp") ytitle("Predicted Y=ln(sbp)") xlabel(4.5(.25)5.5) ylabel(4.5(.25)5.5) 
  

 

 
 

 
Interpretation:  Looks reasonable 
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. * ---- 2) Normality of residuals:  Graphical Assessment 

. * LOOK FOR: Points lying on the line (this suggests all is well)   

. * Command predict with option resid to create yresidual that contains the residuals 

. predict yresidual, resid 
(6 missing values generated) 
 
. pnorm yresidual, msize(vsmall) title("Model Assessment") subtitle("Std Normal Plot of Residuals") 
 

 
 

Interpretation:  Again. Looks reasonable 
 
 
. qnorm yresidual, msize(vsmall) title("Model Assessment") subtitle("Quantile-Normal Plot of 
Residuals") 
 

 

 
 

 
Interpretation:  While there is some slight departure of points from the ideal line, both plots are okay for now. 
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. * ---- 3) Normality of residuals:  Hypothesis Test (Null:  distribution is normal) 
. * LOOK FOR: large p-value, not significant (this suggests it is okay to assume normality)   
 
. sfrancia yresidual 
 
                  Shapiro-Francia W' test for normal data 
 
    Variable |       Obs       W'          V'        z       Prob>z 
-------------+----------------------------------------------------- 
   yresidual |       994    0.97683     15.434     6.271    0.00001 
 
Interpretation:  The null hypothesis of normality of the residuals is rejected (not what we want, but okay for now). 
 
. * ---- 4) Assessment of Multicollinearity:  variance inflation factor (VIF) 
. * LOOK FOR: VIF <10 OR 1/VIF > 0.10 (this suggests all is well) 
. vif 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
  age_female |     34.12    0.029311 
      female |     32.39    0.030869 
         age |      2.38    0.420495 
      ln_scl |      1.18    0.850679 
      ln_bmi |      1.12    0.896450 
-------------+---------------------- 
    Mean VIF |     14.24 
 
Interpretation:  We have two VIF > 10 (and two 1/VIF < .10) à We may have a multicollinearity problem with age_female and female  
 
. * ---- 5) 2 Tests of Model Misspecification   
. * ---- 5a) LINK test (Null:  No misspecification.  _htsq is NOT significant) 
. * LOOK FOR: large p-value, not significant (this suggests all is well)   
 
. linktest 
 
      Source |       SS           df       MS      Number of obs   =       994 
-------------+----------------------------------   F(2, 991)       =    180.45 
       Model |  7.02566005         2  3.51283003   Prob > F        =    0.0000 
    Residual |  19.2921224       991  .019467328   R-squared       =    0.2670 
-------------+----------------------------------   Adj R-squared   =    0.2655 
       Total |  26.3177825       993  .026503306   Root MSE        =    .13953 
 
------------------------------------------------------------------------------ 
      ln_sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        _hat |  -3.398892   4.165516    -0.82   0.415    -11.57314    4.775353 
      _hatsq |   .4506253   .4266839     1.06   0.291    -.3866825    1.287933 
       _cons |   10.73201   10.16508     1.06   0.291    -9.215532    30.67956 
------------------------------------------------------------------------------ 
 
Interpretation:  Nice!  The null hypothesis is NOT rejected à This test does not suggest a model misspecification problem.  
 
 
 
 
 
 
 
 
 



BIOSTATS 690C – Fall 2020                   9.  Stata for Normal Theory Regression - version 16                             Page 25 of 48 
   

 
Design 

 Data 
Collection 

 Data 
Management 

 Data 
Summarization 

 Statistical 
Analysis 

  
Reporting 

     

 
 
. * ---- 5b) Ommitted variables (NULL:  no variables omitted.  All is well) 
. * LOOK FOR: large p-value, not significant (this suggests all is well)   
. ovtest 
 
Ramsey RESET test using powers of the fitted values of ln_sbp 
       Ho:  model has no omitted variables 
                 F(3, 985) =      1.81 
                  Prob > F =      0.1442 
 
 
Interpretation:  Also nice!  The null hypothesis is NOT rejected à This test does not suggest we’ve omitted any important predictors 
 
 
. * ----- 6)  Hypothesis Test of Constant Variance of the Residuals 
. * Breusch-Pagan/Cook Weisberg Test (NULL:  constant variance) 
. * LOOK FOR:  large p-value, not significant (this suggests all is well) 
. hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of ln_sbp 
 
         chi2(1)      =    14.56 
         Prob > chi2  =   0.0001 
 
Interpretation:  The null hypothesis of constant variance is highly statistically significant, suggesting rejection of the null hypothesis of constant variance 
of the residuals.   So, next, we will look at things graphically 
 
. * ----- 6)  Graphical Assessment of Constant Variance of the Residuals 
. * Plot of Y=residual versus X=fitted 
. * LOOK FOR:  Even band, centered at zero (this suggests all is well). 
. * Command rvfplot, yline(0)  
. rvfplot, yline(0) title(Model Check) subtitle(Plot of Y=residual v X=Fitted) 
 

 

 
 

 
 Interpretation:  Assessed graphically, things don’t look so bad.  We’ll forge on. 
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. * ----- 7) Checks for Outliers, High Leverage and Influential Points 
 
. * ---- 7a) Added Variable Plots to Look for Unusual/Influential Points  
. * Command is avplots.   
. * LOOK FOR: Points that are unusual/influential (suggests a problem) 
. avplots 
 

 

 
 
 

 
Interpretation:   None of these reveal anything alarmingly unusual/influential 
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. * ---- 7b) Cooks Distances Plot Y=Cook’s distance with X=study id 
. * LOOK FOR:  all to be less than 4/N (this suggests all is well) 
. * Command predict with option cooksd to create cook that contains the Cook’s distances 
. predict cook, cooksd 
(6 missing values generated) 
 
. * Command generate subject=_n to create subject id for nice plotting on x-axis 
. generate subject=_n 
. graph twoway (scatter cook subject, symbol(d) msize(vsmall)), title("Model Assessment") 
subtitle("Plot of Cook Distances") 
 

 

 
 

 
Interpretation:  4/N = 4/1000 = .004.   à We do see some Cook’s distances that are larger than 4/N. 
 
. * ---- 7c) Plot of Y=leverage versus X=residual squared  
. * Command is lvr2plot 
. * LOOK FOR:  points that are outlying on both (this suggests a problem) 
. lvr2plot 
 

 

 
Interpretation:  This confirms what we saw in the plot of Cook’s distances 
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Step 6 – Report Regression Results. 
Produce appropriate tabulations of regression results.  Produce graphical summaries of the “final” model.  
Interpret.  

 
. * -----  Again:  Must fit the model before doing these reporting commands 
. quietly: regress ln_sbp ln_bmi ln_scl age female age_female  
 
 
. * ---- 1)  Plot predicted Y=ln(sbp) with increasing X = ln(bmi).Option vsquish suppresses blanks. 
. margins, at(ln_bmi=(2.6(.2)3.8)) vsquish 
 
Predictive margins                              Number of obs     =        994 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
1._at        : ln_bmi          =         2.6 
2._at        : ln_bmi          =         2.8 
3._at        : ln_bmi          =           3 
4._at        : ln_bmi          =         3.2 
5._at        : ln_bmi          =         3.4 
6._at        : ln_bmi          =         3.6 
7._at        : ln_bmi          =         3.8 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         _at | 
          1  |   4.701072   .0205758   228.48   0.000     4.660695    4.741449 
          2  |   4.755225   .0144203   329.76   0.000     4.726927    4.783523 
          3  |   4.809378   .0085848   560.22   0.000     4.792531    4.826224 
          4  |   4.863531   .0045417  1070.87   0.000     4.854618    4.872443 
          5  |   4.917684   .0069805   704.49   0.000     4.903985    4.931382 
          6  |   4.971836   .0125698   395.54   0.000      4.94717    4.996503 
          7  |   5.025989   .0186667   269.25   0.000     4.989359     5.06262 
------------------------------------------------------------------------------ 
 
. marginsplot, recast(line) recastci(rarea) 
 

 
 
  Variables that uniquely identify margins: ln_bmi 
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3.  Exploratory Data Analysis, Indicator Variables and Interactions 
 

Examine the data to assess: 

1.  The range and pattern of variability in the outcome variable, Y                         
2.  The range and pattern of variability in the predictor variable X 
3.  The nature and strength of the presumed linear relationship, Y on X 
4.  The occurrence of unusual data points requiring further examination; these could 
       be either important data points that are influential or errors. 
 

3.1  Exploratory Data Analysis 

Familiarize Yourself with the Dataset 
Stata Syntax Notes 
describe 
 
codebook 
codebook, compact 
 
notes 
 
 
label list 
 

 
 
 
 
 
Stata returns any notes that the dataset creator attached 
to this dataset. 
 
Stata shows you the labels attached to discrete variable 
values. 
 

 
One Variable Descriptions – Continuous Variables 
Stata Syntax Notes 
summarize var1 var2 
summarize var1 var2, detail 
 
 
codebook var1 var2 
codebook var1 var2, compact 
 
tabstat var1 var2, statistics(n mean sd min max) 
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Glossary of Choices of Options for tabstat 
tabstat variable, statistics(  ) 
 

 
 
 
One Variable Descriptions – Discrete Variables 
Stata Syntax Notes 
tabulate var1 
tabulate var1, missing 
 
 
 
ssc install fre 
fre var1 var2 
 
tab1 var1 var2 
tab1 var1 var2, missing 
tab1 var1 var2, plot 
 
 
ssc install groups 
groups var1 var2 
 

For single variable frequency tables, the command 
tabulate allows ONE discrete variable only. If you 
issue the command tabulate var1 var2, Stata will return 
a cross-tabulation.  This may not be what you want 
 
Issue the command ssc install fre ONLY ONCE; this 
will download and install the command fre 
 
tab1 with more than one variable will produce separate 
one way frequency tables. 
 
 
 
Issue the command ssc install groups ONLY ONCE; 
this will download and install the command groups 
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Two Variable Descriptions – One Continuous, One Discrete (Grouping Variable) 
Stata Syntax Notes 
 
summarize var1 if groupvar==expression 
 
 
bysort groupvar: summarize var1 
 
 
sort groupvar 
tabstat var1, by(groupvar) statistics(n mean sd min 
max) 
 
sort groupvar 
table groupvar, contents(n var1 mean var1 sd var1)  
   
 
 
 
 
 

 
Obtain one variable description, for single group 
defined by groupvar = = expression. 
 
Obtain one variable description for all groups defined 
by groupvar. 
 
 
 
 
 
 
 

 
 
Glossary of Choices of Options for  table 
table xvariable, contents(  ) 
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Graphical Assessments 
Stata Syntax Notes 
 
Y with one predictor 
 
graph twoway (scatter yvar xvar) 
graph twoway (scatter yvar xvar) (lfit yvar xvar) 
(lowess yvar xvar) 
 
 
 
Y with several predictors (handy and compact) 
 
graph matrix yvar xvar1 xvar2 
graph matrix yvar xvar1 xvar2, half 
graph matrix yvar xvar1 xvar2, half 
maxis(ylabel(none) xlabel(none)) 
 
 

 
 
 
lfit produces least squares linear fit 
lowes produces lowess smoothing fit. 
 
 
 
 
 
 
Tip - graph matrix produces pairwise scatter of the 
predictor variables 
 
 
 

 
Assess Normality of Y 
Stata Syntax Notes 
 
histogram yvar 
histogram  yvar, normal 
 
qnorm yvar 
 
 
Hypothesis Tests of Normality (Null: Normality) 
swilk yvar 
sfrancia yvar 
 
 

 
Look for:  bell shape distribution (all is well) 
 
 
Look for : points falling on a line (all is well) 
 
 
Look for:  non-significant (large) p-value (all is well) 
 
 
 

 
Search for Normalizing Transformation of Y 
Stata Syntax Notes 
 
ladder yvar 
 
 
 
gladder yvar 
 
 

 
Produces table of transformations of Y that might be 
normalizing.  Choose one(s) with the smallest chi 
square value 
 
Produces histogram plots of transformations of Y that 
might be normalizing. 
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3.2  How to Create Indicator Variables 

 

NEVER!!!  
Use a NOMINAL Predictor in a regress Command 

 

The estimated slope will be meaningless. 
 
Example: 
Party (1=Republican, 2=Democratic, 3 = Libertarian, 4 = Green) is a nominal variable.  Because the 
numbers “1”, “2”, “3” and “4” are just labels, a unit change in race has no meaning. Therefore, an 
estimated slope for party also has no meaning. 

 

 
Review of How to Model Discrete Predictors 

(1)  A discrete predictor might be nominal (eg. – race) or ordinal (eg – age, grouped) 

(2)  Note the number of levels (eg – party has 4 levels) 

(3)  Choose one level to be the referent (eg – the group “1=Republican”, if this is the most 
numerous) 

(3)  K levels require (K-1) design variables (eg – For race, we need [4-1]=3 design variables) 

(4)  Use ONLY design variables as predictors.  
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How to Create 0/1 Indicator Variables 
 
Example – Create 0/1 Indicator variables for the 4 levels of party and use these in a regression.  Recall: 
party  =  1  if Republican 
                2 if Democratic 
                3 if Libertarian 
                4 if Green 
 
0/1 Indicators and Regression on 0/1 Indicators 
Stata Syntax Notes 
 
Brute force (Method 1) 
generate repub=(party==1) & !missing(party) 
generate democrat=(party==2) & !missing(party) 
generate libert=(party==3) & !missing(party) 
generate green=(party==4) & !missing(party) 
 
regress yvar democrat libert green 
regress yvar repub democrat libert 
 
 
Brute force (Method 2) 
quietly: tab1 party, generate(party) 
groups party* 
rename party1 repub 
rename party2 democrat 
rename party3 libert 
rename party4 green 
 
regress yvar democrat libert green 
regress yvar repub democrat libert 
 
 
Using the xi: prefix and the i.predictor 
 
xi: regress yvar i.party 
 
 
xi: regress yvar ib4.party 
 
 
 
 
 

 
 
Reminder:  Stata requires double equal signs in logical 
operators. 
 
 
 
 
 
 
 
 
Referent is party = 1 (Republican) 
Referent is party = 4 (Green) 
 
 
 
 
 
Referent is party = 1 (Republican) 
Referent is party = 4 (Green) 
 
 
 
 
Default referent is 1st group, party = 1 (Republican) 
 
 
Tip – You can choose your own referent 
Use ib4 to instead specify 4th group as 
baseline/referent, party = 4 (Green) 

 

 



BIOSTATS 690C – Fall 2020                   9.  Stata for Normal Theory Regression - version 16                             Page 35 of 48 
   

 
Design 

 Data 
Collection 

 Data 
Management 

 Data 
Summarization 

 Statistical 
Analysis 

  
Reporting 

     

3.3  How to Create Interactions 

Interactions and Regression on Interactions 
Stata Syntax Notes 
 
Brute force  
generate dummyx=dummy*xvar 
 
 
regress yvar dummy xvar dummyx 
 
 
Using the xi: prefix and the i.predictor 
ONLY intercepts vary 
xi: regress yvar i.groupvar xvar  
 
Using the xi: prefix and the i.predictor 
Intercepts AND Slopes vary 
xi: regress yvar  i.groupvar xvar i.groupvar#c. xvar 
 

 
Here, dummy is a 0/1 indicator. 
xvar is the other predictor of interest 
 
If you include an interaction as a predictor,  your 
model must also contain the main effects. 
 
 
ONLY intercepts vary 
This will yield a separate intercept for each group 
defined by groupvar and a common slope of yvar on 
xvar. 
 
Intercepts AND Slopes intercepts vary 
This will yield a separate intercept for each group 
defined by groupvar and a separate slope of yvar on 
xvar. 
 
 

 
3.4   How to Created Quartiles (or other groupings)  
Dear reader:  There are lots of ways to do this, some quite slick.  I prefer a “brute force” approach so that I’m sure of what I’ve got. 
Stata Syntax Example 
Brute force  
Step 1:  Obtain values of quartiles (or centiles) 
centile variable, centile(0 25 50 75 100) 
 
Step 2:  Create grouped variable as copy of original 
generate newvariable = variable 
 
Step 3:  Recode new variable according to quartile 
(or centile) boundaries 
recode newvariable (#/#=1) (#/#=2) (#/#=3) (#/#=4) 
 
Step 4:  (Just to be sure) Set new variable = missing 
whenever original variable=missing 
replace newvariable=.  if  variable==. 
 
Step 5:  Check that all is well 
table newvariable, contents(min variable max 
variable) 
 

. centile price, centile(0 25 50 75 100)                                        

    Variable |       Obs  Percentile    Centile    
-------------+---------------------------------------------- 

       price |        74          0        3291    
             |                   25        4193  
             |                   50      5006.5 
             |                   75        6378 
             |                  100       15906    

. generate quartile_price=price if !missing(price) 

. recode quartile_price (3291/4193=1) (4193.01/5006.5=2) 
(5006.6/6378=3) (6378.1/15906=4) 

. replace quartile_price=. if price==. 

 

. table quartile_price, contents(min price max price) 
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                                4.  Simple Linear Regression (Bivariate Analyses) 
 
 
Simple Linear Regression 

Stata Syntax Notes 
 
Graph Simple Linear Regression 
graph twoway (scatter yvar xvar) 
graph twoway (scatter yvar xvar) (lfit  yvar xvar) 
graph twoway (scatter yvar xvar) (lfitci yvar xvar) 
(lfit yvar xvar) 
 
Fit Simple Linear Regression 
regress yvar xvar 
 
The Residuals Should be Normally Distributed 
quietly: regress yvar xvar 
predict newvar1, residuals 
swilk newvar1 
sfrancia newvar1 
histogram newvar1, normal 
qnorm newvar1 
pnorm newvar1 
 
The Variance of the Residuals Should be Constant 
predict newvar1, residuals 
predict newvar2, xb 
rvplot, yline(0) 
graph twoway (scatter newvar1 studyid, yline(0)) 
graph twoway (scatter newvar1 newvar2, yline(0)) 
 
The Cook Distances Should be Small (< 1) w NO 
Spikes 
predict newvar3, cooksd 
graph twoway (scatter newvar3 studyid) 
 

 
 
 
 
 
 
 
 
 
 
 
Prefix  “quietly:” tells stata to suppress output. 
The regress command that follows must be issued 
before the command “predict” will work. 
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                       5.  Multiple Linear Regression and Choose “Tentative” Final Model 
 
 
5.1  Estimation  
 
Fit Model 
Stata Syntax Notes 
 
Obtain Fit 
 
regress yvar xvar1 xvar2 
 
 
regress yvar xvar1 xvar2 if groupvar==2 
 
 
 
regress yvar xvar1 xvar2 if studyidvar!=83 

 
 
 
 
 
 
“if groupvar==2” tells Stata to do use only the 
observations for which groupvar=2.  
 
 
“if studyidvar!=83” tells Stata to exclude the 
observation for which studyid is 83. 
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5.2  Hierarchical Model Comparisons 
 
Optional (because testparm does the same) 
You can use the command ftest (but you may need to install it first) 
The ftest command performs a partial F-test    
 
Step 1:  In Stata issue the command 
findit ftest 
 
Step 2:  From the findit screen 
Scroll down to locate the package at fmwww.bc.edu. 
 
Step 3:  Follow the instructions to download 

 

Review of Hierarchical Models 

Two models, conveniently referred to as “reduced” and “full”, are hierarchical if the all of the predictors 
in the “reduced” model are contained in the “full” model.  Their comparison then addresses the question:  
are the additional variables in the “full” model significant after adjustment for all the variables in the 
“reduced” model? 
 
 The comparison of hierarchical models is an essential tool in regression model development. 

Hierarachical model comparison requires that the fitted models are to the SAME observations – 
This glitch arises if a smaller set of observations is used to fit a model with lots of predictors (because of 
missing values). Tip – Fit your full model first, create an indicator of data completeness as a post-
regression command using the internal Stata variable e(sample), and then use this indicator in the fitting 
of the smaller model.  This is illustrated on the next page. 
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Comparison of Hierarchical Models 
Stata Syntax Notes 
 
Quick Look at Significance Of Some Predictors in a 
Fitted Model (Easy) 
 
Partial F-test of added variables xvar3 xvar4 
regress yvar xvar1 xvar2 xvar3 xvar4 
testparm xvar3 xvar4 
 
 
 
 
 
 
 

 
 
 
 
testparm produces a partial F-test of inclusion of xvar3 
and xvar4 controlling for xvar1 and xvar2  already in 
the model (NULL: zero) 
 
Look for:  small p-value à  after adjustment 
/controlling for xvar1 and xvar2, the additional 
inclusion of xvar3 and xvar2 is statistically significant 
and should be in model. 

 
Hierarchical Comparison of “Full” v “Reduced” 
Models 
 
STEP 1:  Fit full model.  Store. 
regress yvar xvar1 xvar2 xvar3 xvar4  
estimates store full 
 
STEP 2:  Generate indicator of data completeness 
generate complete=e(sample) 
 
STEP 3:  Fit reduced model on SAME observations 
as for the full model.  Store. 
regress yvar xvar1 xvar2 if complete==1 
estimates store reduced 
 
 
 
Partial F-test Comparing Full v Reduced Model 
ftest full reduced 
 
 
 
Likelihood Ratio Test Comparing Full v Reduced 
Model 
lrtest full reduced 
 

 
 
 
 
 
 
I chose to name my full model full 
 
 
I chose to name my indicator variable of complete on 
all predictors complete 
 
 
 
 
 
 
 
Same as testparm.  Look for:  small p-value à  after 
adjustment /controlling for predictors in the reduced 
model, the extra predictors in the full model are 
statistically significant and should be in model. 
 
Look for:  small p-value à  after adjustment 
/controlling for predictors in the reduced model, the 
extra predictors in the full are statistically significant 
and should be in model. 
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 6.  Regression Diagnostics: Model Assumptions and Model Adequacy 
 
Here are Several Useful Variables that STATA Creates for You AFTER Fitting a Model 
Stata Syntax Notes 
 
Predicted Values 
predict var1, xb 
predict var1 if e(sample)==1, xb 
 
Standard Error of Predicted Mean of Y 
predict var2, stdp 
 
Standard Error of Predicted Individual Y 
predict var3, stdf 
 
Residuals 
predict var4, residuals 
predict var4 if e(sample)==1, residuals 
 
Standard Errors of Residuals 
predict var5, stdr 
 
Standardized Residuals 
predict var6, rstandard 
predict var6 if e(sample)==1, rstandard 
 
Jacknife (Studentized) Residuals 
predict var7, rstudent 
 
Leverage 
Predicts var8, leverage 
 
 
Cook Distances 
predict var7, cooksd 
 
 
generate newid=_n 
 
 
 
 

 
Saves predicted Y 
If e(sample)==1 tells Stata to use ONLY the 
observations that were included in model estimation. 
Note – This is not necessary if you have already restricted your 
modeling to complete data only, as we did here. 
 
 
 
 
 
 
Saves residuals = (observed Y) -  (fitted Y)  
 
 
 
 
 
 
Saves standardized residuals = (residual)/SE(residual) 
 
 
 
Saves studentized (jackknife) residuals; the SE is 
slightly different 
 
Saves leverage 
 
 
 
Saves cook distances 
 
 
 
Tip – Use this command ONLY IF your data does not 
contain a studyid variable.  We use this in a plot of cook 
distances versus study id (see page 27) which we named subject 
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6.1  Linearity 
 
Linearity 
Stata Syntax Notes 
 
For Simple Linear Regression 
 
graph twoway (scatter yvar xvar) (lfit yvar xvar) 
 
graph twoway (scatter yvar xvar) (lfitci yvar xvar)  
(lfit yvar xvar) 
 
graph twoway (scatter yvar xvar) (lowess yvar xvar) 
(lfit yvar xvar) 
 

 
 
 
Look for:  linearity 
 
Produces line and 95% confidence band 
 
 
Produces both line and lowess fit.  Departure of lowess 
fit from the fitted line suggests a problem. 

 

 

6.2  Normality of Residuals 
 
Normality of Residuals 
Stata Syntax Notes 
 
Histogram of Residuals 
predict yresid, residuals 
histogram yresid, normal 
 
 
Standardized Normal Probability Plot of Residuals 
predict yresid, residuals 
pnorm yresid 
 
Test of Normality (NULL: Normal) 
swilk yresid 
sfrancia yresid 
 
 

 
 
I chose the name yresid for the residuals. 
 
 
 
 
Assesses normality of residuals 
Look for:  points lie on line (all is well) 
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6.3  Multicollinearity 
 
Multicollinearity occurs when the predictor variables themselves are linearly interrelated.  This is a 
problem because it makes it difficult to extract the separate effect of each predictor; the betas are 
unstable.    
 
Multicollinearity also has the effect of inflating the variances of the estimated betas.  For example, if 
xvar1 and xvar2 are themselves highly linearly interrelated, then the variance of the beta for xvar1 will be 
inflated! 
 
We use the variance inflation factor (VIF) to assess the data for evidence of multicollinearity. 
 
Mulicollinearity 
Stata Syntax Notes 
 
Pairwise Scatterplots of Predictor Variables 
graph matrix xvar1 xvar2 xvar3 xvar4, half 
 
Variance Inflation Factor (VIF) Values 
vif 

 
 
 
 
Look for: 
VIF values > 10 suggest a problem 
1/VIF values < 0.10 suggest a problem 
 

 
 
 
6.4  Model Misspecification 
 
Model Misspecification 
Stata Syntax Notes 
 
Test of Model Misspecification (NULL: none) 
linktest 
 
Test for Omitted Variables (NULL: none forgotten) 
ovtest 
 
 

 
Look for: 
Predictor _hatsq should be NOT significant (all is 
well) 
 
Look for: 
NON significance (all is well) 
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6.5  Constant Variance 
 
Constant Variance 
Stata Syntax Notes 
 
Plot Residuals versus Predicted Y (Method I) 
rvfplot, yline(0) 
 
 
 
Plot of Residuals versus Predicted Y (Method II) 
predict yhat, xb 
predict yresid, residuals 
graph twoway (scatter yresid yhat) 
 
 
Plot Y=residuals versus X=Predictor variable 
predict yresid, residuals 
graph twoway (scatter yresid xvar1) 
 

 
 
Look for residuals randomly distributed in an even 
band centered at 0. 
 
 
 
I chose the name yhat for the predicted  y 
I chose the name yresid for the residuals 
Assesses constant variance 
Look for:  even band centered at zero (all is well) 
 
 
I chose the name yresid for the residuals 
Assesses constant variance 
Look for:  even band centered at zero (all is well) 
 
 

 
Hypothesis Test (Null:  Constant variance) 
 
hettest 

 
 
 
Reject constant variance for small p-values 
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6.6  Outlying, High Leverage, and Influential Points 
 
Preliminary (if you don’t already have it):  Download the command hilo 
The hilo command lets you list the highest and lowest values of a variable together with whatever companion data 
you might want.   Handy for regression diagnostics!    
 
Step 1:  In Stata issue the command 
findit hilo 
 
Step 2:  From the findit screen 
Scroll down to locate the package at www.ats.ucla. 
 
Step 3:  Follow the instructions to download 
 
 
Outliers are Observations with Large Residuals 
Stata Syntax Notes 
 
predict yresid, residuals 
 
stem yresid 
 
hilo yresid studyidvar, high show(#) 
 

 
I chose the name yresid for the residuals 
 
Produces a stem and leaf, good for detecting outliers 
 
Lists the # observations that have the highest values of 
yresid, together with the studyid 
 

 
 
Leverage are Observations with Extreme Values on the Predictor Variables 
Stata Syntax Notes 
 
predict xleverage, leverage 
 
stem xleverage 
 
 
 
hilo xleverage studyidvar, high show(#) 
 

 
I chose the name xleverage for the leverages 
 
Produces a stem and leaf, good for detecting high 
leverage observations. 
Extreme is leverage > (2p + 2) /n where p=# 
predictors. 
 
Lists the # observations that have the highest 
leverages, together with the studyid 
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Influence are Observations that Influence the Estimated Betas 
Stata Syntax Notes 
 
Cook’s Distances 
 
predict cookvar, cooksd 
 
graph twoway (scatter cooksvar idvar) 
 
 
 
 
 

 
 
 
I chose the name cookvar for the cook’s distances 
 
Plot of  Y=Cook distances versus X=Study id (idvar) 
Look for:  nothing extreme (all is well). 
Extreme is cook distance > 4/n 
 
 
 

 
dfbeta 
dfbeta 
 
 
 
 
 
 
graph twoway (scatter DFvar1 studyid) 
 

 
Command dfbeta produces several variables, one for 
each predictor: var1, var2, etc.   
The names of these will be DFvar1, DFvar2, etc.   
Thus, you can assess the influence of an observation 
on the beta for each predictor separately. 
Extreme is dfbeta > 2 / √n 
 
 
Plot of DFvar1 for the predictor var1 versus X=Study 
id 
Extreme is DFvar1 > 2 / √n 
 

 
lvr2plot 
 
 
 
lvr2plot, mlabel(studyidvar) 
 

 
Plot of  Y=leverage versus X=squared residual 
Look for:  Observations that are high on both 
(suggests a problem). 
 
Use option mlabel to identify the observations that are 
problematic. 
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                                    7.  Post Regression:  Prediction and Reporting 
 
7.1  Predictions 
 
Predictions  
Stata Syntax Notes 
 
Prediction of Mean of Y 
Point Estimates 
predict newvar1, xb 
predict newvar1 if e(sample)==1, xb 
 
Standard Error of Predicted Means 
predict newvar2, stdp 
 
Predicted Mean of Y at new value of x 
margins, at(xvar=newalue) atmeans vsquish 
 
 
 
 
Predicted Mean of Y at more than one new value 
margins, at(xvar=(value1 value2 etc)) atmeans 
vsquish 
 
 
 
Predicted Mean of Y for values in a cross-
tabulation of 2 categorical predictors and all other 
predictors at their means 
margins catvar1 catvar2, atmeans 
 

 
 
Save predicted Y to newvar 
If e(sample)==1 tells Stata to use only the 
observations that were included in the regression. 
 
 
Save standard errors of predicted means 
 
Example:  Predicted mean of Y when x=newvalue and 
all other predictors are at the value of their mean 
NOTE:  vsquish is just an aesthetic thing; this option eliminates 
blank lines in tables. 
  
 
Example:  Predicted mean of Y when x=value1, 
value2, etc and all other predictors are at the value of 
their mean  
 
 
 
Example:   
margins gender party, atmeans 
 
 
 

 
Prediction of Individual Y 
Point Estimates 
predict newvar1, xb 
predict newvar1 if e(sample)==1, xb 
 
Standard Error of Predicted Individual Values 
predict newvar3, stdf 
 
 

 
Save predicted Y to newvar 
If e(sample)==1 tells Stata to use only the 
observations that were included in the regression. 
 
 
 
Save standard errors of predicted individual values 
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7.2  Show Models Side-by-Side 
 
I Highly Recommend! – Consider showing side-by-side the various models that you fit and assessed.  Tip – Take care that each 
model is fit to the same observations.  To do this, fit the model with the most predictors first and, from this model, create an 
indicator variable denoting complete data (See again page 40) 
 
Example 
Model 1 Predictors (smallest):   dose age  
Model 2 Predictors (intermediate):  dose age female                 We think “female” might  be a confounder 
Model 3 Predictors (largest):  dose age female doseage            We considered an interaction of dose with age (doseage=dose*age) 
 
Show Models Side-by-Side 
Stata Syntax Notes 
 
Step 1:  Obtain estimation sample for use in all 3 
models 
quietly:  regress yvar dose age female doseage 
generate complete=e(sample) 
 
 
Step 2:  Fit models and store 
 
quietly: regress yvar dose age if complete==1 
estimates store model1 
 
quietly: regress yvar dose age female if complete==1 
estimates store model2 
 
quietly: regress  yvar dose age female doseage  
  if complete==1 
estimates store model3 
 
 
Step 3:  Show models side-by-side 
 
esttab model1 model2 model3, r2 ar2 se scalar(rmse) 
 
 

 
 
Your choice whether to do this “quietly” (suppress 
output). 
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7.3  Plot Predicted Values 
Also Highly Recommended! – Consider producing plots of predicted values from your “final” model. 
 
Two commands are needed here, margins and marginsplot. 
Command margins produces predicted Y (fitted values) at the values of the predictors that you specify. 
The output is a bit hard to read; consider doing this quietly. 
 
Command marginsplot produces a plot of the predicted Y (fitted values) at the values of the predictors that you 
specify.   Typically, the other covariates are set to their mean values using the option atmeans.   Your choice. 
 
Example 
Suppose we have fit a model (any old yvar) to the predictors: female01 and age 
 
Obtain and Plot Adjusted Predicted Values 
Stata Syntax Notes 
 
Predicted Y at Specified X (age), with 95% CI 
 
margins, at(age==(20(5)75)) atmeans 
quietly: margins, at(age==(20(5)75)) atmeans 
 
marginsplot 
 
 
Predicted Y at Specified X (age), no 
CONFIDENCE INTERVAL 
 
margins, at(age==(20(5)75)) atmeans 
quietly: margins, at(age==(20(5)75)) atmeans 
 
marginsplot, noci 
 
 

 
 
 
Produces predicted Y at ages 20, 25, …., 70, 75 
together with associated 95% confidence limits.  
All the other covariate values are set to their mean 
values 
 
 
 

 
Predicted Y at Specified X1 (age), separately for 
Groups Defined by X2 (female01), no 95% CI 
 
margins female01, at(age==(20(5)75)) atmeans 
quietly: margins female01, at(age==(20(5)75)) 
atmeans 
 
 
 
marginsplot, legend(row(1)) 
marginsplot, noci legend(row(1)) 
 

 
 
 
 
Produces predicted Y at ages 20, 25, …., 70, 75 
separately for female01=0( denotes males) and 
female01=1(females). All other covariate values are 
set to their mean values. 
 
legend(row(1)) produces legend at the bottom, rather 
than on the side. 

 


